ForumSevgisi.Com

  ForumSevgisi.Com > ForumSevgimiz Eğitim Bölümü > Türkçemiz Ve Diğer Dersler > Matematik & Geometri


Bağıntı, Fonsiyon, İşlem


Bağıntı, Fonsiyon, İşlem

Türkçemiz Ve Diğer Dersler Kategorisinde ve Matematik & Geometri Forumunda Bulunan Bağıntı, Fonsiyon, İşlem Konusunu Görüntülemektesiniz,Konu İçerigi Kısaca ->> Bağıntı, Fonsiyon, İşlem BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : a ve b elemanlarının belirttiği ( a , b ) şeklindeki ...

Kullanıcı Etiket Listesi

Yeni Konu aç  Cevapla
LinkBack Seçenekler Stil

Okunmamış 08 Aralık 2014, 20:05   #1
Durumu:
Çevrimdışı
User
Güneş teninde güzel.
User - ait Kullanıcı Resmi (Avatar)
Kaygili
Üyelik tarihi: 02 Aralık 2014
Şehir: İstanbul
Mesajlar: 9.308
Konular: 8078
Beğenilen: 727
Beğendiği: 562
www.forumsevgisi.com
Standart Bağıntı, Fonsiyon, İşlem

Bağıntı, Fonsiyon, İşlem

BAĞINTI, FONSİYON, İŞLEM

SIRALI İKİLİ :

a ve b elemanlarının belirttiği ( a , b ) şeklindeki ikiliye sıralı ikili denir. Sıralı ikili denilmesindeki sebep bileşenlerin yeri değiştiğinde ikilinin değişmesindendir.

Yani : (a , b ) ≠ (b , a ) dir.
Örnek :

A( 1 , 3 ) noktası ile B( 3 , 1 ) noktası eşit noktalar değildir.

Noktalar kümesinin elemanları sıralı ikililerdir.
Sıralı ikililerin bileşenleri birinci bileşen, ikinci bileşen olarak adlandırılır.
Sıralı İkililerin Eşitliği :

Sıralı ikililerin eşitliği için birinci ve ikinci bileşenler birbirine eşit olmalıdır.
Yani (x , y ) = (a , b ) ise x = a ve y = b
ÖRNEK :
( x + 3 , y – 1 ) = ( 6 , 4 ) ise x ve y sayıları kaçtır?

Çözüm :

Sıralı ikililerin eşitliği için birinci ve ikinci bileşenler birbirine eşit olmalıdır.
Yani x +3 = 6 y – 1 = 4

x = 6 – 3 y = 4 + 1

x = 3 ve y = 5 bulunur.

( x + 3 , y – 1 ) = ( 6 , 4 )

1. ( x + 3 , y + 1 ) = ( 1 , 2 ) ise x = ? ve y = ?

2. ( 2x , y - 5 ) = ( 8 , -3 ) ise x = ? ve y = ?

3. ( x/2 , 3y ) = ( 6 , 0 ) ise x = ? ve y = ?

4. ( 2x + 1 , 4 ) = ( 7 , y - 2 ) ise x = ? ve y = ?

ALIŞTIRMALAR 1 :
KARTEZYEN ÇARPIM

A ve B herhangi iki küme olsun. Birinci bileşeni A’ dan, ikinci bileşeni B’ den alınarak oluşturulabilecek tüm sıralı ikililerin kümesine, A ile B’ nin kartezyen çarpımı denir ve A x B biçiminde gösterilir. Buna göre;

şeklinde gösterilir.

ÖRNEK : Aynı futbol takımında oynayan Ali, Sertaç ve Tamer, 7, 10 ve 11 numaralı formaları giyebilirler. Bu oyuncuların seçebilecekleri formaları gösteren sıralı ikilileri yazalım.

ÇÖZÜM : A kümesi A = { Ali , Sertaç , Tamer }

B kümesi B = { 7 , 10 , 11 }

A X B = { (Ali, 7 ), (Ali, 10), (Ali, 11 ), (Sertaç,7 ), (Sertaç,10 ), (Sertaç,11 ), (Tamer, 7 ), (Tamer, 10 ), (Tamer, 11 ) }

ÖRNEK : A = {1,2 } , B = {3,a} olduğuna göre A x B ve BxA kümelerini yazınız.

ÇÖZÜM :

AxB = {(1,3), (1,a), (2 ,3), (2 ,a) }

BxA = {(3 ,1), (3,2 ), (a ,1), (a , 2)}

ÖRNEK : A = { -1, 1, 2 } , B = { 0, 1 } olduğuna göre A x B kümesini analitik düzlemde gösteriniz.

ÇÖZÜM :

A X B = { (-1 , 0 ), (-1 , 1), (1 , 0 ), ( 1 , 1 ), ( 2 , 0 ), (2 , 1 )}

ÖRNEK : A X B = { (-1 , 0 ), (-1 , 1), (1 , 0 ), ( 1 , 1 ), ( 2 , 0 ), (2 , 1 )} kartezyen çarpımını oluşturan A ve B kümelerini yazalım.

ÇÖZÜM : Birinci bileşenler A kümesini, ikinci bileşenler B kümesini oluşturur. Tekrar eden eleman küme içine bir kez yazılır.

A kümesi A = { -1, 1 , 2 }

B kümesi B = { 0, 1 }

ÖRNEK : A X B = { ( 0 , 0 ), ( 0 , 1), ( 0 , 2 ), ( -3 , 0 ), ( -3 , a ), (-3 , 2 )} kartezyen çarpımında a ile gösterilen sayı kaçtır?

ÇÖZÜM : 0 ile başlayan sıralı ikililerin ikinci bileşenleri 0, 1, 2 dir. –3 ile başlayan sıralı ikililerin ikinci bileşenleri de 0, 1, 2 olmalıdır. Bu nedenle a elemanı 1 olmalıdır.
1. A = { 0, 1, 2 ) ve B = { -2, 2 } ise AXB = ?

2. A = { -2, 0, 3 ) ve B = { -1, 0, 1 } ise AXB = ?

3. A = { 2, 3, 4, 5 ) ve B = {6 } ise AXB = ?

4. A = { -1, 1, 2 ) ve B = { -3, 2, 5 } ise AXB çarpımını analitik düzlemde gösteriniz.

5. A X B = { (A, 2 ), (A, 5), ( B, 2 ), ( B, 5 ), ( C, 2 ), ( C, 5 ) } ise A ve B kümelerini yazınız.

6. A X B = { ( 2 , 2 ), ( 2 , 5), ( 2 , 8 ), ( 3 , 2 ), ( 3 , 5 ), ( 3 , 8 ), ( a , 2 ), ( 4 ,5 ),( 4 , 8 ) } kartezyen çarpımında a ile gösterilen sayı kaçtır?

7. A X B = { (-3, -2 ), (-3, 1), ( 0, -2 ), ( 0, 1 ), ( 2, -2 ), ( 2, 1 ) } ise AUB kümesini yazınız.

ALIŞTIRMALAR 2 :

KARTEZYEN ÇARPIMININ ÖZELLİKLERİ

S(A) ; A kümesinin eleman sayısını göstermektedir.

1) s(AxB) = s(BxA) = s(A).s(B)

2) A≠B ise AxB ≠ BxA değişme özelliği yoktur.

3) (AxB)xC = Ax(BxC) birleşme özelliği vardır .

4) Ax(BUC) = (AxB)U(AxC)

5) Ax(B ∩C) = (AxB) ∩ (AxC)

6) AxA = A²

ÖRNEKLER

1. A = { 2, 5 } , B= { -1, 1, 3 } ve C = { 0, 4 } ise (AxB)U(AxC) kümesini bulalım.
ÇÖZÜM : (AxB)U(AxC) = Ax(BUC) olduğundan önce BUC kümesini buluruz.
BUC = { -1, 0, 1, 3, 4 }
Ax(BUC) = { ( 2, -1 ), ( 2, 0 ), ( 2, 1 ), ( 2, 3 ), ( 2, 4 ), ( 5, -1 ), ( 5, 0 ), ( 5, 1 ), ( 5, 3 ), ( 5, 4 )}
2. A, B ve C üç kümedir. s(BUC) = 4 ve s[Ax(BUC)] = 32 olduğuna göre A dan A ya kaç tane bağıntı yazılabilir?

ÇÖZÜM : s[Ax(BUC)] = S(A). S(BUC) = 32

S(A). 4 = 32

S(A ) = 32:4 = 8

A dan A ya yazılabilecek bağıntı sayısı 28.8 = 264 tanedir.



BAĞINTI

A ve B herhangi iki küme olsun. AxB ‘ nin her alt kümesine , A’ dan B’ ye bir bağıntı denir.

* AxA ‘ nın her alt kümesine A’ dan A’ ya bağıntı ya da A’ da bir bağıntı denir.
* s (A) = m , s (B) = n ise A’ dan B’ ye 2m.n tane bağıntı tanımlanır.

ÖRNEK : AxB = {(1,3), (1,a), (2 ,3), (2 ,a) } kartezyen çarpımının 4 tane elemanı vardır.

Bu kümenin alt kümeleri sayısı 24 = 16 ‘dır.

O halde A ‘ dan B ‘ ye 16 tane bağıntı tanımlanabilir.

Örneğin

β1 = {(1,3), (1,a) } ve β2 = { (1,a), (2 ,3), (2 ,a) } alt kümeleri A dan B ye birer bağıntıdır.



SONUÇ : s(A) = m ve s(B) = n ise A dan B ye tanımlanabilen bağıntı sayısı 2m.n tanedir.
ÖRNEKLER
1. Doğal sayılar kümesinde β = {(x,y)| x + y = 2 } bağıntısının sıralı ikililerini yazalım.
ÇÖZÜM : Bağıntı (x , y ) şeklinde olan ve x ile y nin toplamı 2 olan sıralı ikilileri yazın diyor.
Bunlar: β = {(0,2), (1,1), (2,0) } olur
2. Doğal sayılar kümesinde β = {(x,y)| x > y } bağıntısının sıralı ikililerini yazalım.
ÇÖZÜM : Bağıntı (x , y ) şeklinde ve x in y den büyük olduğu sıralı ikilileri yazın diyor.

Bu sıralı ikililerin tümünü yazamayız.
Bu nedenle β = {(1,0), (2,0), (3,0),..., (2,1), (3,1), (4,1),..., } şeklinde bu bağıntının sıralı ikililerini gösterebiliriz.
3. Reel sayılar kümesinde β = { (x,y) | l x l = 3 ve x+2> y > 0 } bağıntısının gösterdiği alan kaç birim karedir?

ÇÖZÜM : l x l = 3 demek x = ± 3 demektir.

x = 3 ' ü ikinci eşitsizlikte yerine yazarsak x + 2 > y > 0 , yani 5 > y > 0 olur.

x = - 3 ' ü ikinci eşitsizlikte yerine yazarsak x + 2 > y > 0 , yani -1> y > -3 olur.

Bölge bir kenarı 6 birim olan karedir. Alanı 6x6 = 36 olur.
________________
Umut bitti,limanı değil gezegeni verin ateşe.

imza
Alıntı ile Cevapla
Yeni Konu aç  Cevapla

Etiketler
baginti, fonsiyon, islem

Seçenekler
Stil


Saat: 00:25

Forum Yasal Uyarı
vBulletin® ile Oluşturuldu
Copyright © 2016 vBulletin Solutions, Inc. All rights reserved.

ForumSevgisi.Com Her Hakkı Saklıdır
Tema Tasarım:
Kronik Depresif


Sitemiz bir 'paylaşım' sitesidir. Bu yüzden sitemize kayıt olan herkes kontrol edilmeksizin mesaj/konu/resim paylaşabiliyorlar. Bu sebepten ötürü, sitemizdeki mesaj ya da konulardan doğabilecek yasal sorumluluklar o yazıyı paylaşan kullanıcıya aittir ve iletişim adresine mail atıldığı taktirde mesaj ya da konu en fazla 48 saat içerisinde silinecektir.

ankara escort, izmir escort ankara escort, ankara escort bayan, eryaman escort, bursa escort pendik escort, antalya escort,