ForumSevgisi.Com

  ForumSevgisi.Com > ForumSevgimiz Eğitim Bölümü > Türkçemiz Ve Diğer Dersler > Matematik & Geometri


Geometride Dörtyüzlü


Geometride Dörtyüzlü

Türkçemiz Ve Diğer Dersler Kategorisinde ve Matematik & Geometri Forumunda Bulunan Geometride Dörtyüzlü Konusunu Görüntülemektesiniz,Konu İçerigi Kısaca ->> Geometride Dörtyüzlü Geometride tetrahedron veya dörtyüzlü, dört üçgen yüzden oluşan bir çokyüzlüdür (polihedron), her köşesinde üç üçgen birleşir. Düzgün dörtyüzlü ...

Kullanıcı Etiket Listesi

Yeni Konu aç  Cevapla
LinkBack Seçenekler Stil

Okunmamış 03 Ağustos 2015, 20:17   #1
Durumu:
Çevrimdışı
ForumSevgisi - ait Kullanıcı Resmi (Avatar)
none
Üyelik tarihi: 14 Temmuz 2015
Mesajlar: 8.944
Konular: 8563
Beğenilen: 0
Beğendiği: 0
www.forumsevgisi.com
Standart Geometride Dörtyüzlü

Geometride Dörtyüzlü

Geometride tetrahedron veya dörtyüzlü, dört üçgen yüzden oluşan bir çokyüzlüdür (polihedron), her köşesinde üç üçgen birleşir. Düzgün dörtyüzlü dört üçgenin eşkenar olduğu bir dörtyüzlüdür ve Platonik cisimlerden biridir. Dörtyüzlü, dört yüzü olan tek konveks çokyüzlüdür.[1] Tetrahedron isminin sıfat hali (tetrahedrona ait veya tetrahedronla ilişkili anlamında) "tetrahedral"dir.

Dörtyüzlü, simpleks kavramının üç boyutlu hâlidir.

Dörtyüzlü, bir cins piramittir. Piramit, çokgen bir tabanı tek bir noktada birleştiren üçgen yüzlerden oluşur. Dörtyüzlü durumunda taban bir üçgendir (dört yüzün herhangi biri taban sayılabilir), dolayısıyla dörtyüzlü ayrıca üçgen piramit olarak da bilinir.

Tüm dışbükey (konveks) çokgenler gibi, dörtyüzlü de tek bir kağıt yaprağın katlanması ile meydana gelebilir. İki ağdan oluşur.[1]

Her bir dörtyüzlü için öyle bir küre (çevrel küre) vardır ki dörtyüzlünün köşeleri bu kürenin yüzeyinde yer alırlar.



Düzgün dörtyüzlüler için formüller

Kenar uzunluğu a olan bir düzgün dörtyüzlü için:

Taban yüzeyin yüzölçümü yüzölçüm Yükseklik Hacim Bir kenar ile bir yüz arasıdaki açı
(yaklaşık 54.7356°) İki yüz arasındaki açı
(yaklaşık 70.5288°) Merkezi köşelere birleştiren doğrular arasındaki açı
(yaklaşık 109.4712°) Karşısında bir yüz olan bir köşedeki katı açı
(yaklaşık 0.55129 steradian) Çevrel kürenin yarıçapı Yüzlere teğet olan içkürenin yarıçapı[2] Kenarlara teğet olan ortakürenin yarıçapı[2] Dışkürelerin yarıçapları Bir köşeden dışküre merkezine uzaklık

Taban yüze göre bir yüzün eğimi, bir kenarın eğiminin iki katıdır, çünkü taban üzerinde, bir kenar boyunca köşeye olan yatay uzaklık, bir yüzün kenarortayından o köşeye olan uzaklığın iki katıdır. Bir diğer deyişle, eğer C, tabanın ağırlık merkezi (ortacı) ise, C'den tabanın köşelerinden birine olan uzaklık, C'den taban kenarlarından birinin orta noktasına olan uzaklığın iki katıdır. Bunun nedeni, kenarortayların birbirini kütle merkezinde kesmeleri ve bu noktanın her bir kenarortayı uzunlukları 1:2 oranlı olan iki parçaya bölmesidir.

Hacim

Dörtyüzlünün hacmi, piramit hacim formülüdür:



burada A0 tabanın alanı ve h tabandan tepeye olan yüksekliktir. Bu formül her yüz için geçerlidir, dolayısıyla köşelerden karşı yüzlere olan uzaklık, o yüzün alanı ile ters orantılıdır.

Aşağıdaki köşelere sahip bir dörtyüzlü için a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), ve d = (d1, d2, d3), hacim (1/6)·|det(a−b, b−c, c−d)|. Birbirleriyle basit bir çizge oluşturan köşe çiftlerinin herhangi bir diğer kombinasyonu ile de hacmi veren bir formül oluşturulabilir. Bu formül, nokta çarpım ve çapraz çarpım kullanılarak da yazılabilir:



Eğer koordinat sisteminin orijini d köşesine rastlayacak şekilde seçilirse, d = 0 olur, dolayısıyla



burada a, b ve c bir köşede kesişen üç kenara karşılık gelir ve bir üçlü skaler çarpımdır. Bu formülü bir paralelyüzün hacmi ile karşılıştırınca bir dörtyüzlünün hacminin, onunla üç kesişen yüz paylaşan bir paralelyüzün hacminin 1/6'sı olduğu sonucuna varabiliriz.
Üçlü skaler çarpım aşağıdaki determinantla gösterilebilir:
veya burada satır veya sütun vektör olarak gösterilebilir Dolayısıyla burada vb. bunun sonucu



burada \alpha,\beta,\gamma\,, d köşesinde oluşan düzlemsel açılardır. \alpha\, açısı, d köşesini b ve c köşelerine bağlayan kenarlar arasındaki açıdır. \beta\, açısı a ve c köşeleri için aynı şeyi yapar, \gamma\, de a ve b köşelerinin konumları ile tanımlanmıştır. Dörtyüzlünün köşeleri arasındaki uzaklıklar kullanılarak hacim hesaplamak için Cayley–Menger determinantı kullanılır:



burada indisleri köşelerini temsil eder ve bunlar arasındaki ikili uzaklıklardır, yani iki köşeyi birleştiren kenarın uzunluğu. Determinantın negatif değerli olması, verilen uzunluklara sahip bir dörtyüzlünün olamayacağı anlamına gelir. Bu formül, bazen Tartaglia formülü olarak da bilinir, 15. yüzyılda yaşamış ressam Piero della Francesca'dan kaynaklanır. Bir üçgenin alanını hesaplamakta kullanılan, 1. yüzyılda keşfedilmiş Heron formülü'nün üç boyuttaki karşılığıdır.

Kenarlar arasındaki uzaklık

Dörtyüzlünün iki karşı kenarı, iki aykırı doğru üzerinde yer alırlar (aykırı doğrular birbirlerine ne paralel ne de birbirini kesen doğrulardır). Bu iki doğru arasındaki en yakın noktalar kenarlara ait noktalarsa bu noktalar kenarlar arasındaki en yakın uzaklığı tanımlar; aksi halde, kenarlar arasındaki uzaklık, uç noktalar ve karşı kenar arasındaki uzaklıklardan en kısa olanıdır. a ve b-c karşı kenarlarının oluşturduğu aykırı doğrular arasındaki uzaklık d olsun.[5] Bu durumda hacim için bir diğer formül şöyledir:



Geometrik ilişkiler

Dörtyüzlü bir 3-simpleks'tir. Diğer Platonik cisimlerden farklı olarak, bir düzgün dörtyüzlünün tüm köşeleri birbirinden eşit uzaklıktadır. Köşeler, üç boyutlu uzayda dört noktanın birbirine eşit uzaklıkta olabileceği tek konumdadır.

Dörtyüzlü, üçgensel bir piramittir. Düzgün dörtyüzlü öz-çifteştir (İng. self-dual).

Düzgün bir dörtyüzlü bir küpün içine iki farklı şekilde yerleştirilebilir, her köşe küpün bir köşesi ve her kenar küpün yüzlerinden birinin çaprazı olacak şekilde. Bu yerleştirmelerden biri için, köşelerin koordinatları şöyledir:

(+1, +1, +1);
(−1, −1, +1);
(−1, +1, −1);
(+1, −1, −1).

Meydana gelen bu dörtyüzlünün orijin merkezli olup kenar uzunluğu 2√2'dir. Öbür dörtyüzlü (birincisinin öz-çifteşidir) için tüm işaretlerin tersini alın. Bu iki dörtyüzlünün köşeleri birlikte küpün köşelerini meydana getirirler. Böylece bir düzgün dörtyüzlünün bir 3-yarıküpü (3-demicube) olduğu gösterilmiş olur.




Alıntı ile Cevapla
Yeni Konu aç  Cevapla

Etiketler
dortyuzlu, geometride

Seçenekler
Stil


Saat: 18:27

Forum Yasal Uyarı
vBulletin® ile Oluşturuldu
Copyright © 2016 vBulletin Solutions, Inc. All rights reserved.

ForumSevgisi.Com Her Hakkı Saklıdır
Tema Tasarım:
Kronik Depresif


Sitemiz bir 'paylaşım' sitesidir. Bu yüzden sitemize kayıt olan herkes kontrol edilmeksizin mesaj/konu/resim paylaşabiliyorlar. Bu sebepten ötürü, sitemizdeki mesaj ya da konulardan doğabilecek yasal sorumluluklar o yazıyı paylaşan kullanıcıya aittir ve iletişim adresine mail atıldığı taktirde mesaj ya da konu en fazla 48 saat içerisinde silinecektir.

ankara escort, izmir escort ankara escort, ankara escort bayan, eryaman escort, bursa escort pendik escort, antalya escort,