ForumSevgisi.Com

  ForumSevgisi.Com > ForumSevgimiz Eğitim Bölümü > Türkçemiz Ve Diğer Dersler > Matematik & Geometri


Faktöriyel Konu Anlatımı


Faktöriyel Konu Anlatımı

Türkçemiz Ve Diğer Dersler Kategorisinde ve Matematik & Geometri Forumunda Bulunan Faktöriyel Konu Anlatımı Konusunu Görüntülemektesiniz,Konu İçerigi Kısaca ->> Faktöriyel Konu Anlatımı Faktöriyel Konu Anlatımı Faktöriyel, 1' den n' ye kadar olan doğal sayıların çarpımıdır. n, bir doğal sayı ...

Kullanıcı Etiket Listesi

Yeni Konu aç  Cevapla
LinkBack Seçenekler Stil

Okunmamış 04 Ağustos 2015, 12:32   #1
Durumu:
Çevrimdışı
ForumSevgisi - ait Kullanıcı Resmi (Avatar)
none
Üyelik tarihi: 14 Temmuz 2015
Mesajlar: 8.944
Konular: 8563
Beğenilen: 0
Beğendiği: 0
www.forumsevgisi.com
Standart Faktöriyel Konu Anlatımı

Faktöriyel Konu Anlatımı

Faktöriyel Konu Anlatımı
Faktöriyel, 1' den n' ye kadar olan doğal sayıların çarpımıdır. n, bir doğal sayı olmak üzere, n faktöriyel

n! = 1.2.3.4.5.6. ... .(n-2).(n-1).n
veya

n! = n.(n-1).(n-2).(n-3).(n-4). ... .5.4.3.2.1 şeklinde tanımlanır.

0! ile 1! ' in 1 olduğu varsayılacaktır. Yani, 0! = 1 ve 1! = 1 dir.

1' den büyük doğal sayıların faktöriyelleri ise şöyle hesaplanacaktır:

• 2! = 2.1 = 2
• 3! = 3.2.1 = 3.2! = 3.2 = 6
• 4! = 4.3.2.1 = 4.3! = 4.3.2! = 4.3.2 = 24
• 5! = 5.4.3.2.1 = 5.4! = 5.4.3! = 5.4.6 = 20.6 = 120
• 6! = 6.5.4.3.2.1 = 6.5! = 6.120 = 720
• 7! = 7.6.5.4.3.2.1 = 7.6! = 7.720 = 5040

• n! = n.(n-1).(n-2).(n-3). ... .3.2.1 = n.(n-1)! = n.(n-1).(n-2)!
• (2n)! = 2n.(2n-1)(2n-2). ... .3.2.1 = 2n.(2n-1)! = 2n.(2n-1).(2n-2)!
• (3n)! = 3n.(3n-1).(3n-2). ... .3.2.1 = 3n.(3n-1)! = 3n.(3n-1).(3n-2)!
• (n+1)! = (n+1).n.(n-1). ... .3.2.1 = (n+1).n! = (n+1).n.(n-1)!
• (n-1)! = (n-1).(n-2).(n-3). ... .3.2.1 = (n-1),(n-2)! = (n-1).(n-2).(n-3)!

Faktöriyelin Bazı Özellikleri:
1. n >= 2 olmak üzere, n! çift doğal sayıdır.
2. n >= 5 olmak üzere, n! sayısının son rakamı 0' dır. Yani, n! sayısının sonunda genelde 5 asal çarpanlarının sayısı kadar 0 rakamı bulunur.
3. n! - 1 sayısının sonundaki 9 rakamlarının sayısı, n! sayısının sonundaki sıfır rakamlarının sayısı kadardır.
4. x, y, n bir sayma sayısı olmak üzere, a bir asal sayı ise,
y! = an.x
koşulunu sağlayan en büyük n değerini bulmak için
• y sayısı, a asal sayısına bölünür
• Ardışık bölme işlemine, bölme sıfır oluncaya kadar devam edilir ve bölümler toplanır.
5. x, y, n bir sayma sayısı olmak üzere, a bir asal sayı değilse,
y! = an.x
koşulunu sağlayan en büyük n değerini bulmak için
• Bu sayı asal çarpanlarına ayrılarak her asal sayı için aynı işlem yapılır
• Bulunan asal sayıların kuvvetleri uygun biçimde düzenlenir.

ÖRNEKLER:
Örnek 1: 6! + 5! işleminin sonucu kaçtır?
Çözüm: 6! + 5! = 6.5! + 5! = (6+1).5! = 7.5! = 7.120 = 840

Örnek 2: 37! sayısının sondan kaç tane basamağı sıfırdır?
Çözüm: 37! sayısının içinde bulunan 5 asal çarpanlarının sayısını bulmalıyız. Bu işlemi iki farklı yolla yapabiliriz.

Örnek 3: 0! + 1! + 2! + 3! + 4! + ... + 40! toplamının 20 ile bölümünden kalan kaçtır?

Çözüm:
20 = 5 . 4 tür. Dolayısıyla, 4 ve 5 çarpanını bulunduran her sayı 20 ile tam bölünür. Yani, 5! ve 5! den büyük sayıların toplamı 20 ile tam olarak bölünür. Bu takdirde, 0! + 1! + 2! + 3! + 4! toplamının 20 ile bölümünden kalanı bulursak, istenen toplamın 20 ile bölümünden kalanı bulmuş oluruz. Buna göre,
0! + 1! + 2! + 3! + 4! = 1 + 1 + 2.1 + 3.2.1 + 4.3.2.1 = 1 + 1 + 2 + 6 + 24 = 34
34 ün 20 ye bölümünden kalan, 14 tür. O halde, 0! + 1! + 2! + 3! + ... + 40! toplamının 20 ile bölümünden kalan 14 tür.

Örnek 4: 45! + 60! toplamının sonunda kaç tane sıfır vardır?

Çözüm:
Küçük sayının sonunda kaç tane sıfır varsa, toplamın sonunda da o kadar sıfır olacağından,
45 in 5 e bölünmesiyle, 45 = 5 . 9 + 0 ve 45 in 25 e bölünmesiyle 45 = 25 . 1 + 20 elde edilir. Dolayısıyla, 45! + 60! toplamının sonundaki sıfırların sayısı, bölümlerin toplamı olduğundan, 1 + 9 = 10 bulunur.turkeyarena.net
İkinci yol olarak, 45 = 5 . 9 + 0, 9 = 5 . 1 + 4 olduğundan, sıfırların sayısı yine
1 + 9 = 10 olur.

Örnek 5: 48! - 1 sayısının sonunda kaç tane 9 rakamı vardır?

Çözüm:
48! in sonunda ne kadar sıfır varsa, o kadar 9 rakamı vardır. Dolayısıyla,
48 = 5 . 9 + 3, 9 = 5 . 1 + 4 olduğundan, 9 + 1 = 10 tane 9 rakamı vardır.
Örnek 6: x ve n sayma sayıları olmak üzere, 35! = 3n.x ise, n nin alabileceği en büyük değer kaçtır?

Çözüm:
n nin alabileceği en büyük değeri bulmak için 35! in içindeki 3 asal çarpanlaının sayısını bulmamız gerekir. Bu işlemi yaparsak, Ardışık bölme işlemleri sonucunda bölümler şöyle bulunur:
35 = 3 . 11 + 2, 11 = 3 . 3 + 2, 3 = 3 . 1 + 0
Dolayısıyla, n nin alabileceği en büyük değer, 11 + 3 + 1 = 15 olur.

Örnek 15: n bir doğal sayı olmak üzere,
83! / 14n
işleminin sonucunun doğal sayı olması için, n' nin en büyük değeri kaç olmalıdır?

Çözüm:
14 = 2 . 7 olduğu için, 83! in içerisinde kaç tane 7 çarpanı varsa, n' nin en büyük değeri odur. Dolayısıyla,
83 = 7.11 + 6, 11 = 7.1 + 4 olduğundan, n' nin alabileceği en büyük değer
11 + 1 = 12 olur.

Örnek 7: m ve n ardışık çift doğal sayılardır. m > n olmak üzere,

ise, n kaçtır?

Çözüm: m > n koşuluna göre, n = 2k ve m = 2k + 2 olsun.

Örnek 8: 1! + 2! + 3! + ... + 843! toplamı hesaplandığında birler basamağındaki rakam kaç olur?

Çözüm:Her terimi tek tek hesaplayalım.
1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, ...
5! ve 5! den büyük sayıların birler basamağı 0 olacağından, bunları göz önüne almaya gerek yoktur. Bu nedenle, 5! den önceki sayıların toplamını alıp 10' a bölmeliyiz.turkeyarena.net Bu durumda, kalan birler basamağını verecektir.
1 + 2 + 6 + 24 = 33 olur ve Kalan 33 = 10.3 +3 bulunur.
Dolayısıyla, birler basamağı 3 tür.

Örnek 9: 8! + 9! + 10! toplamı aşağıdakilerden hangisine tam bölünemez?
a) 750 b) 625 c) 250 d) 125 e) 10

Çözüm:
8! + 9! + 10! = 8! . (1 + 9 + 10.9) = 8! . 100 =8! . 102 = 8! . (2.5)2 = 8! . 22 . 52
8! de 1 tane 5 olduğundan, tüm toplamda 3 tane 5 bulunmaktadır. Dolayısıyla, 625 = 54 olduğundan, toplam 625 ile bölünemez.
Alıntı ile Cevapla
Yeni Konu aç  Cevapla

Etiketler
anlatimi, faktoriyel, konu

Seçenekler
Stil


Saat: 22:46

Forum Yasal Uyarı
vBulletin® ile Oluşturuldu
Copyright © 2016 vBulletin Solutions, Inc. All rights reserved.

ForumSevgisi.Com Her Hakkı Saklıdır
Tema Tasarım:
Kronik Depresif


Sitemiz bir 'paylaşım' sitesidir. Bu yüzden sitemize kayıt olan herkes kontrol edilmeksizin mesaj/konu/resim paylaşabiliyorlar. Bu sebepten ötürü, sitemizdeki mesaj ya da konulardan doğabilecek yasal sorumluluklar o yazıyı paylaşan kullanıcıya aittir ve iletişim adresine mail atıldığı taktirde mesaj ya da konu en fazla 48 saat içerisinde silinecektir.

ankara escort, izmir escort ankara escort, ankara escort bayan, eryaman escort, bursa escort pendik escort, antalya escort,