ForumSevgisi.Com

  ForumSevgisi.Com > ForumSevgimiz Eğitim Bölümü > Türkçemiz Ve Diğer Dersler > Matematik & Geometri


Asal Sayılar Konu Anlatımı


Asal Sayılar Konu Anlatımı

Türkçemiz Ve Diğer Dersler Kategorisinde ve Matematik & Geometri Forumunda Bulunan Asal Sayılar Konu Anlatımı Konusunu Görüntülemektesiniz,Konu İçerigi Kısaca ->> Asal Sayılar Konu Anlatımı ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. ...

Kullanıcı Etiket Listesi

Yeni Konu aç  Cevapla
LinkBack Seçenekler Stil

Okunmamış 18 Kasım 2014, 17:11   #1
Durumu:
Çevrimdışı
Liich
Üye
Liich - ait Kullanıcı Resmi (Avatar)
Keyifli
Üyelik tarihi: 14 Kasım 2014
Yaş: 24
Mesajlar: 7.850
Konular: 4856
Beğenilen: 1368
Beğendiği: 1252
www.forumsevgisi.com
Standart Asal Sayılar Konu Anlatımı

Asal Sayılar Konu Anlatımı

ASAL SAYILAR
Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki tüm asal sayılar tek sayıdır. Asal sayılar kümesi,
{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... }
dir.
Fermat Teoremi' ne göre, n asal sayı olmak üzere, 2n - 1 şeklinde yazılabilen sayılar asal sayıdır. Örneğin,
22 - 1, 23 - 1, 25 - 1, 27 - 1, 211 - 1, ...
sayıları, asal sayıdır.
Aralarında asal sayılar:
1' den başka pozitif ortak böleni olmayan sayılara, aralarında asal sayılar adı verilir. Birden fazla sayının aralarında asal olması için, bu sayıların asal sayı olması gerekmez. Asal sayılar, kesinlikle aralarında asal sayılardır. Bununla birlikte, 10 ve 81 sayısı birer asal sayı olmamasına rağmen, aralarında asal sayılardır. Diğer taraftan, 10 ile 8 sayısı birer asal sayı olmamasına rağmen, 2 ortak bölenleri olduğu için, aralarında asal sayılar değildir. Bir sayı aralarında asal iki sayıya bölünebiliyorsa, bu iki sayının çarpımına da bölünür.
Örneğin,
• 2, 9
• 10, 81
• 5, 29
• 3, 8
• 2, 10, 35
sayı grupları, ortak tam bölenleri olmadığı için aralarında asal sayılardır.
Asal olmayan sayılara da bileşik sayı adı verilir. Dolayısıyla, bileşik sayıların 1 ve kendisinden başka bölenleri vardır. Örneğin, 10 sayısı bir bileşik sayıdır. Çünkü, 10 sayısının 1 ve kendisinden başka, 2 ile 5 böleni vardır. Buradan, asal olmayan 10 sayısı, birer asal sayı olan 2 sayısı ile 5 sayısının çarpımı olarak yazılabilir. 2 ile 5 sayısına, 10 sayısının asal çarpanı veya böleni denir. Yani, bileşik bir sayı, asal sayıların çarpımı şeklinde yazılabilir.
Örnek 1:
Aşağıdaki sayı gruplarından hangisi aralarında asaldır?
a) 4, 20 b) 6, 21 c) 27, 36, 39 d) 8, 24, 36 e) 3, 5, 25
Çözüm:
a) 4 ile 20' nin ortak böleni vardır ve bu da 2 ile 4' tür.
b) 6 ile 21' in ortak böleni vardır ve bu da 3' tür.
c) 27, 36 ve 39' un ortak böleni vardır ve ortak bölen 3' tür.
d) 8, 24 ve 36' nın ortak böleni vardır ve ortak bölen 2 ve 4' tür.
e) 3, 5 ve 25' in ortak böleni yoktur. Çünkü, bu üç sayıyı birden bölen 1' den başka sayı yoktur. Dolayısıyla, bu sayılar aralarında asaldır.
Örnek 2:
2m + 3 ile 7n - 5 sayıları aralarında asal olduğuna göre,

ise, m ve n kaçtır?

Çözüm:
2m + 3 ile 7n - 5 aralarında asal olduklarına göre,
2m + 3 = 5
2m = 5 - 3
2m = 2
m = 1

7n - 5 = 9
7n = 9 + 5
7n = 14
n = 2
bulunur.
Örnek 3:
a, b ve c birbirinden farklı rakamlar olmak üzere, ab ile bc iki basamaklı aralarında asal sayılardır. Buna göre, ab + bc toplamının en küçük değeri kaçtır?
Çözüm:
Toplamın en küçük olması için, sayıları en küçük almalıyız. Buna göre, ab = 21 olurken. bc = 13 olmalıdır. Dolayısıyla,
ab + bc = 21 + 13 = 34
olur.
Örnek 4:
2x + y ile 4 x + y sayıları aralarında asal olduğuna göre,

ise, 3x + 2y toplamı kaçtır?
Çözüm:
2x + y ile 4x + y sayıları aralarında asal olduğuna göre, her ikisinin de ortak böleni olmaması gerektiğinden, eşitliğin sağ tarafı ortak bölenden arındırılmalıdır. Dolayısıyla,

olur ve buradan,
2x + y = 7 ... (1)
4x + y = 9 ... (2)
yazılır. Bu denklemleri ortak olarak çözelim. Bunun için, (1) nolu denklemi - 1 ile çarpalım ve (1) nolu denklemle (2) nolu denklemi taraf tarafa toplayalım.
- 1 / 2x + y = 7
4x + y = 9
- 2x - y = - 7
4x + y = 9
Son iki denklemin toplamı
2x = 2
x = 1
bulunur ve x = 1 değerini (1) nolu denklemde yerine koyalım
2.1 + y = 7
y = 7 - 2
y = 5
bulunur. Buradan
3x + 2y = 3.1 + 2.5 = 3 +10 = 13
olur.
Alıntı ile Cevapla
Yeni Konu aç  Cevapla

Etiketler
anlatimi, asal, konu, sayilar

Seçenekler
Stil


Saat: 04:15

Forum Yasal Uyarı
vBulletin® ile Oluşturuldu
Copyright © 2016 vBulletin Solutions, Inc. All rights reserved.

ForumSevgisi.Com Her Hakkı Saklıdır
Tema Tasarım:
Kronik Depresif


Sitemiz bir 'paylaşım' sitesidir. Bu yüzden sitemize kayıt olan herkes kontrol edilmeksizin mesaj/konu/resim paylaşabiliyorlar. Bu sebepten ötürü, sitemizdeki mesaj ya da konulardan doğabilecek yasal sorumluluklar o yazıyı paylaşan kullanıcıya aittir ve iletişim adresine mail atıldığı taktirde mesaj ya da konu en fazla 48 saat içerisinde silinecektir.

ankara escort, izmir escort ankara escort, ankara escort bayan, eryaman escort, bursa escort pendik escort, antalya escort,